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Abstract. The well-known proof of Beurling’s Theorem in the Hardy space 𝐻2 , which describes all
shift-invariant subspaces, rests on calculating the orthogonal projection of the unit constant function
onto the subspace in question. Extensions to other Hardy spaces 𝐻 𝑝 for 0 < 𝑝 < ∞ are usually
obtained by reduction to the𝐻2 case via inner-outer factorization of𝐻 𝑝 functions. In this paper, we
instead explicitly calculate the metric projection of the unit constant function onto a shift-invariant
subspace of the Hardy space 𝐻 𝑝 when 1 < 𝑝 < ∞. This problem is equivalent to finding the best
approximation in 𝐻 𝑝 of the conjugate of an inner function. In 𝐻2 , this approximation is always a
constant, but in 𝐻 𝑝 , when 𝑝 ≠ 2, this approximation turns out to be zero or a non-constant outer
function. Further, we determine the exact distance between the unit constant and any shift-invariant
subspace and propose some open problems. Our results use the notion of Birkhoff-James orthogo-
nality and Pythagorean Inequalities, along with an associated dual extremal problem, which leads
to some interesting inequalities. Further consequences shed light on the lattice of shift-invariant
subspaces of 𝐻 𝑝 , as well as the behavior of optimal polynomial approximants in 𝐻 𝑝 .

1 Introduction

Optimal polynomial approximants (OPAs) are polynomials which heuristically
approximate the reciprocal of an element in a function space. For example, suppose
𝑋 is a Banach space of analytic functions defined on a planar domain, for which poly-
nomials are dense and multiplication by the independent variable is bounded. Given
𝑓 ∈ 𝑋\{0} and 𝑛 ∈ N = {0, 1, 2, . . .} we define an 𝑛-th optimal polynomial approximant
to 1/ 𝑓 as a polynomial which solves the minimization problem

inf
𝑞∈P𝑛

∥1 − 𝑞 𝑓 ∥𝑋,

where P𝑛 is the set of all polynomials of degree at most 𝑛.
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2

Under the name least squares inverses, Robinson [39] introduced these approximants,
in a restricted context, as a way to address various problems in signal processing. Chui
[24], Chui and Chan [25], and Izumino [35] followed the work of Robinson with related
results. Fifty years later, starting with [6], a renewed interest in the subject arose due to
significant and interesting connections to function theory, reproducing kernels, and
orthogonal polynomials (see, e.g., the surveys [5] and [42]). OPAs were further inves-
tigated in Dirichlet-type spaces [8, 10], in more general reproducing kernel Hilbert
spaces [30], in the spaces ℓ𝑝

𝐴
[23, 43], in 𝐿 𝑝 of the unit circle [17], in Hilbert spaces of

analytic functions on the bidisk [7, 13] and on the unit ball [40, 41], and in the context of
free functions [3]. Recently, a long-standing conjecture for OPAs in several variables
was disproved in [11]. See also [1, 28, 29] for related work.

In this paper, we will focus on the Hardy spaces 𝐻 𝑝 , which for 0 < 𝑝 < ∞ can be
defined as

𝐻 𝑝 :=
{
𝑓 ∈ Hol(D) : ∥ 𝑓 ∥ 𝑝𝑝 := sup

0<𝑟<1

1
2𝜋

∫ 2𝜋

0
| 𝑓 (𝑟𝑒𝑖 𝜃 ) |𝑝 𝑑𝜃 < ∞

}
,

where Hol(D) is the set of analytic functions on the open unit disc D. In the case
𝑝 = ∞, we define

𝐻∞ :=
{
𝑓 ∈ Hol(D) : ∥ 𝑓 ∥∞ := sup

𝑧∈D
| 𝑓 (𝑧) | < ∞

}
.

For 1 ⩽ 𝑝 ⩽ ∞, it is well known that 𝐻 𝑝 is a Banach space and 𝐻2 is a Hilbert space.
Functions in 𝐻 𝑝 have non-tangential limits almost everywhere on the unit circle T,
and 𝐻 𝑝 functions restricted to their boundary values on T can be viewed as a closed
subspace of 𝐿 𝑝 := 𝐿 𝑝 (T, 𝑑𝑚), where 𝑑𝑚 is the normalized Lebesgue measure on
T. Indeed, 𝐻 𝑝 can equivalently be defined as the set of 𝐿 𝑝 functions with Fourier
coefficients vanishing for negative frequencies. For more on 𝐻 𝑝 spaces see, e.g., [26]
or [34].

This work was initially motivated by the question of whether OPAs in 𝐻 𝑝 (𝑝 ≠ 2)
can have zeros in the closed unit disk, which, at the time of writing this manuscript, is
still an open problem. This question arose from an interesting fact in 𝐻2: if 𝑓 ∈ 𝐻2 is
such that 𝑓 (0) ≠ 0, then the OPAs to 1/ 𝑓 can never vanish in the closed disk [12, 24].

Note for 𝑓 ∈ 𝐻 𝑝 , if 𝑓 (0) = 0, then by subharmonicity, all OPAs in𝐻 𝑝 (1 ⩽ 𝑝 ⩽ ∞)
vanish identically. It is also worth noting that for 𝑝 = 1 and 𝑝 = ∞, OPAs are not
uniquely defined, unlike the case of 1 < 𝑝 < ∞. Therefore, for the rest of this work,
we will consider only 1 < 𝑝 < ∞ and functions 𝑓 ∈ 𝐻 𝑝 such that 𝑓 (0) ≠ 0.

OPAs are intimately linked with the forward shift 𝑆, given by (𝑆 𝑓 ) (𝑧) = 𝑧 𝑓 (𝑧);
the projection of the unit constant function onto the subspace span{𝑆𝑘 𝑓 : 𝑘 =

0, 1, . . . , 𝑛} is 𝑓 multiplied by the OPA of degree up to 𝑛. When 𝑝 = 2, this projec-
tion is an orthogonal projection and the Hilbert space structure makes computation
of OPAs straightforward with linear algebra techniques. However, when 𝑝 ≠ 2, the
projection is a metric projection, which is nonlinear, and makes explicit computation
of OPAs much more difficult. In this paper we find a strikingly simple expression for
the limit of OPAs in 𝐻 𝑝 without calculating the OPAs explicitly. We will often use 𝑧
interchangeably with 𝑆, and say a subspace 𝑀 is 𝑧-invariant if 𝑆𝑀 ⊆ 𝑀 . If 𝑓 ∈ 𝐻 𝑝

has corresponding OPAs (𝑝𝑛)𝑛≥0, then lim𝑛→∞ 𝑝𝑛 𝑓 can be seen as the projection of
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1 onto the 𝑧-invariant subspace

[ 𝑓 ] 𝑝 := span{𝑆𝑘 𝑓 : 𝑘 = 0, 1, 2, . . .}
𝐻 𝑝

.

It is critical for us to recall the celebrated theorem of Beurling which describes every
closed nontrivial 𝑧-invariant subspace𝑀 of𝐻2 as𝑀 = 𝐽 ·𝐻2, for some inner function
𝐽 (a function in 𝐻∞ is called inner if it has boundary values of unit modulus almost
everywhere). Note that Beurling’s Theorem holds for all 0 < 𝑝 < ∞ (see, e.g., [31,
p. 98]) and for weak-∗ closed subspaces of 𝐻∞ (see, e.g., [31, Theorem 7.5, Chapter
2]). A significant focus of this work is placed on studying projections of 1 onto these
subspaces.

As we will see, these projections naturally lead to approximating (in 𝐿 𝑝) conjugates
of inner functions by𝐻 𝑝 functions. Given an𝐻 𝑝 function, we determine the distance
between 1 and the 𝑧-invariant subspace of 𝐻 𝑝 generated by that function. In 𝐻2, that
distance is measured via the orthogonal projection of 1 onto the invariant subspace.
Indeed, that orthogonal projection gives a scalar multiple of the generating inner func-
tion. This approach gives rise to a proof of Beurling’s Theorem for 𝐻2 (see, e.g., [34,
p. 100]). Again, we note for 𝑝 ≠ 2, 𝐻 𝑝 is not a Hilbert space but rather a Banach
space and in this setting we no longer have orthogonal projections, but rather metric
projections. Although these projections are non-linear, we can still discuss orthogo-
nality in the Birkhoff-James sense. Our immediate aim is to explore several questions,
including:

- What is the metric projection of 1 onto a 𝑧-invariant subspace in 𝐻 𝑝?
- Is the projection of 1 onto a 𝑧-invariant subspace an inner function?
- If the projection of 1 onto a 𝑧-invariant subspace is not an inner function, does the

projection have an inner factor which is not shared with the generating function
for the subspace?

- Given a 𝑧-invariant subspace, what is the distance between 1 and that invariant
subspace?

When considering metric projections, the use of duality is a critical tool for the
related extremal problem (see, e.g., [26, 37]). In our context, the statement of duality is
as follows. Let 1 < 𝑝 < ∞, 𝜓 ∈ 𝐿 𝑝 , and 𝑞 =

𝑝

𝑝−1 . Then the distance between 𝜓 and
𝐻 𝑝 can be expressed as the norm of the linear functional given by𝜓 on the annihilator
of 𝐻 𝑝 inside 𝐿𝑞 , namely,

sup
∥ 𝑓 ∥𝑞⩽1

���� 1
2𝜋𝑖

∫
T
𝑓 (𝜁)𝜓(𝜁) 𝑑𝜁

���� = inf
𝜑∈𝐻 𝑝

∥𝜓 − 𝜑∥𝐿𝑝 . (1.1)

The paper is organized as follows:

- In Section 2, we discuss the background needed to pass from the Hilbert setting to
the more general Banach setting. In particular, we introduce Birkhoff-James
orthogonality and state some useful inequalities, known as Pythagorean
inequalities, which will be used in the subsequent sections.

- In Section 3, we answer the questions posed above by finding an explicit formula
for the metric projection of 1 onto any 𝑧-invariant subspace of 𝐻 𝑝 and calculating
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the associated distance. This leads to several corollaries that enrich our
understanding of the lattice of 𝑧-invariant subspaces of 𝐻 𝑝 .

- In Section 4, we study the zeros of OPAs in 𝐻 𝑝 and outline a possible path to
prove that those zeros always lie outside D for any 𝑝 ≠ 2. We also consider planar
disks, centered at the origin, in which OPAs cannot vanish. We establish several
estimates for the radius of such a disk, depending only on 𝑝 and 𝑓 , for which
OPAs are zero-free.

- Finally, in Section 5, we conclude with some comments and open questions.

2 Preliminaries: Birkhoff-James Orthogonality and
Pythagorean Inequalities

Recall that in 𝐻2, if 𝑀 is a closed nontrivial 𝑧-invariant subspace of 𝐻2, then the
orthogonal projection of 1 onto 𝑀 gives a scalar multiple of the inner function that
is the generator for 𝑀 . We seek to understand the properties of the analagous metric
projection when 1 < 𝑝 < ∞. Recall that the metric projection of 1 onto a 𝑧-invariant
subspace 𝑀 ⊆ 𝐻 𝑝 is the unique function 𝑔∗𝑝 minimizing ∥1 − 𝑔∥ 𝑝 over all 𝑔 ∈ 𝑀 .
We are particularly interested in obtaining an explicit formula for this projection
and determining whether or not it is a generator of 𝑀 . Since by Beurling’s Theorem
we know that 𝑀 = [𝐽] 𝑝 for some inner function 𝐽 , we are equivalently asking if
𝑔∗𝑝 = 𝐽 ·𝐺 where𝐺 is an outer function. To examine this question, it will be useful to
have some background on metric projections.

Let x and y be vectors belonging to a normed linear space 𝒳. We say that x is
orthogonal to y in the Birkhoff-James sense if

∥x + 𝛽y∥𝒳 ⩾ ∥x∥𝒳

for all scalars 𝛽 [14, 36]. In this situation we write x ⊥𝒳 y. This way of generaliz-
ing orthogonality is particularly useful in our context since it is based on an extremal
condition.

If 𝒳 is an inner product space, then the relation ⊥𝒳 coincides with the usual
orthogonality relation. In more general spaces, however, the relation ⊥𝒳 is neither
symmetric nor linear. In the case 𝒳 = 𝐿 𝑝 (𝜇), for a measure 𝜇, let us write ⊥𝑝 instead
of ⊥𝐿𝑝 . When 1 < 𝑝 < ∞, Birkhoff-James orthogonality in 𝐿 𝑝 can be expressed as in
integral condition, which will be useful later.

Theorem 2.1 (James (1947) [36]) Suppose that 1 < 𝑝 < ∞. If 𝑓 and 𝑔 are elements of 𝐿 𝑝 ,
then

𝑓 ⊥𝑝 𝑔 ⇐⇒
∫

| 𝑓 |𝑝−2 𝑓 𝑔 𝑑𝜇 = 0, (2.1)

where any occurrence of “|0|𝑝−20” in the integrand is interpreted as zero.

For a short proof of this criterion for orthogonality in 𝐿 𝑝 , see [27, Theorem A, p.
124]. For an extension to more general normed spaces, see [4]. In light of this integral
orthogonality condition, we define, for a measurable function 𝑓 and any 𝑠 > 0, the
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notation

𝑓 ⟨𝑠⟩ := | 𝑓 |𝑠−1 𝑓 . (2.2)

Note that if 𝑓 ∈ 𝐿 𝑝 for 1 < 𝑝 < ∞, then 𝑓 ⟨𝑝−1⟩ ∈ 𝐿𝑞 , where 𝑝 and 𝑞 are conjugate
exponents, and then for 𝑔 ∈ 𝐿 𝑝 ,

𝑓 ⊥𝑝 𝑔 ⇐⇒ ⟨𝑔, 𝑓 ⟨𝑝−1⟩⟩ = 0,

where ⟨· , ·⟩ is the standard dual pairing between 𝐿 𝑝 and its dual. Consequently, the
relation ⊥𝑝 is linear in its second argument, and it then makes sense to speak of a
vector being orthogonal to a subspace of 𝐿 𝑝 . In particular, if 𝑓 ⊥𝑝 𝑔 for all 𝑔 belonging
to a subspace ℳ of 𝐿 𝑝 , then

∥ 𝑓 + 𝑔∥𝐿𝑝 ⩾ ∥ 𝑓 ∥𝐿𝑝

for all 𝑔 ∈ ℳ, and thus dist𝐿𝑝 ( 𝑓 ,ℳ) = ∥ 𝑓 ∥𝐿𝑝 . In other words, the best approxima-
tion to 𝑓 in ℳ is 0, or, using another terminology, 𝑓 is badly approximable by ℳ. In
our case, we will be interested in 𝑓 = 1−𝑔∗,where 𝑔∗ is the metric projection of 1 onto
ℳ, and therefore, to identify 𝑔∗, we are looking for 𝑔∗ ∈ ℳ such that (1 − 𝑔∗) ⊥𝑝 𝑔

for every 𝑔 ∈ ℳ.
There is a version of the Pythagorean Theorem for 𝐿 𝑝 , where orthogonality is in the

Birkhoff-James sense. It takes the form of a family of inequalities relating the lengths
of orthogonal vectors with that of their sum.

Theorem 2.2 Suppose 𝑓 ⊥𝑝 𝑔 in 𝐿 𝑝 . If 𝑝 ∈ (1, 2] , then

∥ 𝑓 + 𝑔∥ 𝑝
𝐿𝑝 ⩽ ∥ 𝑓 ∥ 𝑝

𝐿𝑝 + 1
2𝑝−1 − 1

∥𝑔∥ 𝑝
𝐿𝑝 (2.3)

∥ 𝑓 + 𝑔∥2
𝐿𝑝 ⩾ ∥ 𝑓 ∥2

𝐿𝑝 + (𝑝 − 1)∥𝑔∥2
𝐿𝑝 . (2.4)

If 𝑝 ∈ [2,∞), then

∥ 𝑓 + 𝑔∥ 𝑝
𝐿𝑝 ⩾ ∥ 𝑓 ∥ 𝑝

𝐿𝑝 + 1
2𝑝−1 − 1

∥𝑔∥ 𝑝
𝐿𝑝 (2.5)

∥ 𝑓 + 𝑔∥2
𝐿𝑝 ⩽ ∥ 𝑓 ∥2

𝐿𝑝 + (𝑝 − 1)∥𝑔∥2
𝐿𝑝 . (2.6)

These inequalities originate from [15, 16, 21]; see [22, Corollary 3.4] for a unified
treatment with broader classes of spaces.

It will be expedient to refer to (2.3) and (2.6) as the upper Pythagorean inequalities,
and (2.4) and (2.5) as the lower Pythagorean inequalities, so that the two cases depend-
ing on 𝑝 can be handled together. The specific values of the positive multiplicative
constants, i.e., 𝑝 − 1 and 1/(2𝑝−1 − 1), are generally unimportant, and thus they will
usually be denoted simply by 𝐾 .

3 Metric projections of 1 onto invariant subspaces

For 𝑓 ∈ 𝐻 𝑝 , recall that [ 𝑓 ] 𝑝 denotes the closure of the polynomial multiples of 𝑓 in
𝐻 𝑝 . Colloquially, we say [ 𝑓 ] 𝑝 is the closed 𝑧-invariant subspace generated by 𝑓 . The
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6

present section deals with solving the minimization problem

inf
𝑔∈𝑀

∥1 − 𝑔∥ 𝑝 ,

where 𝑀 is a 𝑧-invariant subspace. We will use several standard facts concerning 𝐻 𝑝

functions; e.g., if 𝐽 ∈ 𝐻 𝑝 is inner, then by Beurling’s Theorem, [𝐽] 𝑝 = 𝐽 · 𝐻 𝑝 , a
function 𝑓 ∈ 𝐻 𝑝 is outer if and only if [ 𝑓 ] 𝑝 = 𝐻 𝑝 , and a polynomial is outer if an only
if it does not vanish in the open disk. See [26] for more properties of 𝐻 𝑝 functions.

3.1 Extremal functions and distances

We first consider the case where the 𝑧-invariant subspace 𝑀 is generated by a finite
Blaschke product.

Proposition 3.1 Let 1 < 𝑝 < ∞. If 𝐽 is the finite Blaschke product

𝐽 (𝑧) =
𝑁∏
𝑘=1

𝑧 − 𝑎𝑘
1 − 𝑎𝑘𝑧

with zeros 𝑎1, 𝑎2, . . . , 𝑎𝑁 ∈ D \ {0}, then

inf
ℎ∈𝐻 𝑝

∥1 − 𝐽ℎ∥ 𝑝

is attained when ℎ = ℎ∗, where for 𝑁 > 1,

1 − 𝐽 (𝑧)ℎ∗ (𝑧) = (1 − |𝑎1𝑎2 · · · 𝑎𝑁 |2)2/𝑝

[∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

]2/𝑝

, 𝑧 ∈ D (3.1)

and the parameters 𝑤1, 𝑤2, . . . 𝑤𝑑 ∈ D \ {0} satisfy

1 = (1 − |𝑎1𝑎2 · · · 𝑎𝑁 |2)
∏𝑑

𝑘=1 (1 − 𝑤̄𝑘𝑎 𝑗 )∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑎 𝑗 )

(3.2)

for all 𝑗 , 1 ⩽ 𝑗 ⩽ 𝑁 , where 1 ⩽ 𝑑 ⩽ 𝑁 − 1. For 𝑁 = 1,

1 − 𝐽 (𝑧)ℎ∗ (𝑧) =
[

1 − |𝑎1 |2
1 − 𝑎1𝑧

]2/𝑝

, 𝑧 ∈ D. (3.3)

Moreover, dist𝐻 𝑝 (1, [𝐽] 𝑝) =
(
1 − |𝐽 (0) |2

)1/𝑝 .

Proof The function

𝑎1𝑎2 · · · 𝑎𝑁 𝐽 (𝑧) = 𝑎1𝑎2 · · · 𝑎𝑁
𝑁∏
𝑘=1

𝑧 − 𝑎𝑘
1 − 𝑎𝑘𝑧

takes values in a disk of radius |𝑎1𝑎2 · · · 𝑎𝑁 | < 1. Consequently the function

1 − (−1)𝑁𝑎1𝑎2 · · · 𝑎𝑁
𝑁∏
𝑘=1

𝑧 − 𝑎𝑘
1 − 𝑎𝑘𝑧

= 1 − 𝐽 (0)𝐽 (𝑧)
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is outer. It remains outer if we multiply through by
∏𝑁

𝑘=1 (1 − 𝑎𝑘𝑧). That is to say,

𝑁∏
𝑘=1

(1 − 𝑎𝑘𝑧) − (−1)𝑁𝑎1𝑎2 · · · 𝑎𝑁
𝑁∏
𝑘=1

(𝑧 − 𝑎𝑘) (3.4)

is an outer polynomial. In fact, the degree 𝑁 terms cancel, leaving an outer polynomial
of degree 𝑑 ⩽ 𝑁 − 1. If 𝑁 = 1, we simply obtain the constant 1 − |𝑎1 |2 and the proof
is complete for that case. Otherwise, we write the outer polynomial (3.4) as

𝑐(1 − 𝑤̄1𝑧) (1 − 𝑤̄2𝑧) · · · (1 − 𝑤̄𝑑𝑧). (3.5)

Because this polynomial is outer, each 𝑤𝑘 satisfies 0 < |𝑤𝑘 | ⩽ 1. Substituting 𝑧 = 𝑎 𝑗

into the equation

𝑁∏
𝑘=1

(1 − 𝑎𝑘𝑧) − (−1)𝑁𝑎1𝑎2 · · · 𝑎𝑁
𝑁∏
𝑘=1

(𝑧 − 𝑎𝑘) = 𝑐(1 − 𝑤̄1𝑧) (1 − 𝑤̄2𝑧) · · · (1 − 𝑤̄𝑑𝑧)

yields

𝑁∏
𝑘=1

(1 − 𝑎𝑘𝑎 𝑗 ) − (−1)𝑁𝑎1𝑎2 · · · 𝑎𝑁
𝑁∏
𝑘=1

(𝑎 𝑗 − 𝑎𝑘)

= 𝑐(1 − 𝑤̄1𝑎 𝑗 ) (1 − 𝑤̄2𝑎 𝑗 ) · · · (1 − 𝑤̄𝑑𝑎 𝑗 )

and so
𝑁∏
𝑘=1

(1 − 𝑎𝑘𝑎 𝑗 ) − 0 = 𝑐

𝑑∏
𝑘=1

(1 − 𝑤̄𝑘𝑎 𝑗 )

=⇒ 1 = 𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑎 𝑗 )∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑎 𝑗 )

(3.6)

for each 𝑗 , 1 ⩽ 𝑗 ⩽ 𝑁 . The rational expression∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

is outer, so that its 2/𝑝 power is an analytic function in D. The condition (3.6) tells us
that the 𝐻 𝑝 function

1 −
[
𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

]2/𝑝

= 1 −
(
1 − 𝐽 (0)𝐽 (𝑧)

)2/𝑝

has zeros at 𝑎1, 𝑎2, . . . , 𝑎𝑁 , and thus can be written as 𝐽ℎ for some ℎ ∈ 𝐻 𝑝 .
Rearranging gives

1 − 𝐽 (𝑧)ℎ(𝑧) =
[
𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

]2/𝑝

=

(
1 − 𝐽 (0)𝐽 (𝑧)

)2/𝑝
, (3.7)

an outer function in 𝐻 𝑝 .
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Recalling notation from (2.2), we have, for |𝑧 | = 1,

(1 − 𝐽ℎ) ⟨𝑝−1⟩𝐽 =


[
𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

]2/𝑝
⟨𝑝−1⟩

𝑁∏
𝑘=1

(𝑧 − 𝑎𝑘)
(1 − 𝑎𝑘𝑧)

=


[
𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

]2/𝑝
(𝑝−2)/2

·

[
𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

]2/𝑝
1+(𝑝−2)/2

𝑁∏
𝑘=1

(𝑧 − 𝑎𝑘)
(1 − 𝑎𝑘𝑧)

=

[
𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

] (𝑝−2)/𝑝

𝑐

∏𝑑
𝑘=1 (1 − 𝑤𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

·
𝑁∏
𝑘=1

(𝑧 − 𝑎𝑘)
(1 − 𝑎𝑘𝑧)

=

[
𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

] (𝑝−2)/𝑝

𝑐𝑧𝑁−𝑑
∏𝑑

𝑘=1 (𝑧 − 𝑤𝑘)∏𝑁
𝑘=1 (𝑧 − 𝑎𝑘)

·
∏𝑁

𝑘=1 (𝑧 − 𝑎𝑘)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

= 𝑧𝑁−𝑑

[
𝑐

∏𝑑
𝑘=1 (1 − 𝑤̄𝑘𝑧)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

] (𝑝−2)/𝑝

𝑐

∏𝑑
𝑘=1 (𝑧 − 𝑤𝑘)∏𝑁
𝑘=1 (1 − 𝑎𝑘𝑧)

, (3.8)

which is 𝑧𝑁−𝑑 , multiplied by an element of 𝐻𝑞 . Notice also that the exponent 𝑁 − 𝑑
is an integer at least 1. These conditions imply that∫ 2𝜋

0
(1 − 𝐽 (𝑒𝑖 𝜃 )ℎ(𝑒𝑖 𝜃 )) ⟨𝑝−1⟩𝐽 (𝑒𝑖 𝜃 )𝑒𝑖𝑛𝜃 𝑑𝜃

2𝜋
= 0, ∀𝑛 ⩾ 0,

and hence 1− 𝐽ℎ ⊥𝑝 𝐽𝑧
𝑛 for all indices 𝑛 ⩾ 0. We may conclude that ℎ = ℎ∗ is indeed

the extremal function for which we are looking.
By comparing (3.4) and (3.5) when 𝑧 = 0, we obtain 𝑐 = 1 − |𝑎1𝑎2 · · · 𝑎𝑁 |2.

Moreover, from (3.7),

dist𝐻 𝑝 (1, [𝐽] 𝑝) = ∥1 − 𝐽ℎ∗∥ 𝑝

=





(1 − 𝐽 (0)𝐽
)2/𝑝






𝑝

= ∥1 − 𝐽 (0)𝐽∥2/𝑝
2

=

(
1 − |𝐽 (0) |2

)1/𝑝
,

as claimed. ■

We note that Proposition 3.1 provides explicit information about the constants𝑤𝑘 .
The solution (3.1) to the extremal problem is consistent with equation (11) on page 138
of Duren [26], which solves the general dual extremal problem in 𝐻 𝑝 with rational
kernels. The benefit of the present approach, in which the kernel arises in connection
with a finite Blaschke product, is that condition (3.2) enables the direct calculation of
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the parameters 𝑤𝑘 , 1 ⩽ 𝑘 ⩽ 𝑁 − 1, as well as the scaling factor; on the other hand, in
[26] the determination of these parameters is left open as a “very difficult problem.”
For 𝑁 = 1, the constants 𝑤𝑘 are absent and the formula (3.3) is a normalized power
of the Szegö kernel.

Using the following lemma, we can extend the hypotheses of Proposition 3.1 to
include any inner function.

Lemma 3.2 Let 1 < 𝑝 < ∞ and 𝐽 be an inner function, then there exists a sequence (𝐽𝑛)𝑛≥0
of finite Blaschke products such that ∥𝐽𝑛 − 𝐽∥ 𝑝 → 0 as 𝑛→ ∞.

Proof Firstly, it is known that the set of (infinite) Blaschke products is dense in the
set of inner functions with respect to the 𝐻∞ norm, and thus also the 𝐻 𝑝 norm (this
is a corollary of a theorem of Frostman; see [31, Corollary 6.5]). Thus, it suffices to
consider the case where 𝐽 is an infinite Blaschke product

𝐽 (𝑧) = 𝜁
∞∏
𝑘=1

|𝑎𝑘 |
𝑎𝑘

𝑎𝑘 − 𝑧
1 − 𝑎𝑘𝑧

, 𝑧 ∈ D

where 𝜁 ∈ T and (𝑎𝑘)∞𝑘=1 ⊆ D is, of course, a Blaschke sequence. For 𝑛 ∈ N we set

𝐽𝑛 (𝑧) = 𝜁
𝑛∏

𝑘=1

|𝑎𝑘 |
𝑎𝑘

𝑎𝑘 − 𝑧
1 − 𝑎𝑘𝑧

, 𝑧 ∈ D.

We know that ∥𝐽𝑛 − 𝐽∥2 → 0 (see the lemma on p. 64 in [34] and the discussion
thereafter). Thus, the result follows immediately if 1 < 𝑝 < 2. If 𝑝 > 2, then, almost
everywhere on the circle, we have

|𝐽𝑛 − 𝐽 |𝑝 = |𝐽𝑛 − 𝐽 |2 · |𝐽𝑛 − 𝐽 |𝑝−2 ⩽ |𝐽𝑛 − 𝐽 |2 · 2𝑝−2

and so ∥𝐽𝑛 − 𝐽∥ 𝑝 ⩽ ∥𝐽𝑛 − 𝐽∥
1
𝑝

2 · 2
𝑝−2
𝑝 , which gives the desired result. ■

We now extend Proposition 3.1.

Theorem 3.3 Let 1 < 𝑝 < ∞. Suppose 𝐽 is an inner function with 𝐽 (0) ≠ 0, and

inf
ℎ∈𝐻 𝑝

∥1 − 𝐽ℎ∥ 𝑝 (3.9)

is attained when ℎ = ℎ∗. Then [𝐽ℎ∗] 𝑝 = [𝐽] 𝑝 and, in particular, ℎ∗ is outer. Moreover,

dist𝐻 𝑝 (1, [𝐽] 𝑝) =
(
1 − |𝐽 (0) |2

)1/𝑝
.

Proof By Lemma 3.2, we can find a sequence (𝐽𝑛)𝑛≥0 of finite Blaschke prod-
ucts converging to 𝐽 in 𝐻 𝑝 . Hence, by continuity of metric projections, we have
dist𝐻 𝑝 (1, [𝐽𝑛] 𝑝) → dist𝐻 𝑝 (1, [𝐽] 𝑝) as 𝑛 → ∞ (see [20, Proposition 4.8.1]). By
Proposition 3.1,

dist𝐻 𝑝 (1, [𝐽𝑛] 𝑝) =
(
1 − |𝐽𝑛 (0) |2

)1/𝑝
,
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but since 𝐽𝑛 → 𝐽 in 𝐻 𝑝 , certainly 𝐽𝑛 (0) → 𝐽 (0), and therefore

dist𝐻 𝑝 (1, [𝐽] 𝑝) =
(
1 − |𝐽 (0) |2

)1/𝑝
. (3.10)

Now let us show that [𝐽ℎ∗] 𝑝 = [𝐽] 𝑝 , i.e., that ℎ∗ is outer. Suppose ℎ∗ = 𝐽1𝑔 for some
nontrivial inner function 𝐽1 and 𝑔 ∈ 𝐻 𝑝 outer. Then by the above established distance
formula (3.10), and using the fact that |𝐽1 (0) | < 1, we obtain

∥1 − 𝐽ℎ∗∥ 𝑝𝑝 = inf
ℎ∈𝐻 𝑝

∥1 − 𝐽ℎ∥ 𝑝𝑝

⩾ inf
𝑔∈𝐻 𝑝

∥1 − 𝐽𝐽1𝑔∥ 𝑝𝑝

= 1 − |𝐽 (0) |2 |𝐽1 (0) |2

> 1 − |𝐽 (0) |2

= ∥1 − 𝐽ℎ∗∥ 𝑝𝑝 ,

which is a contradiction, and therefore ℎ∗ must be outer. ■

Note for 1 < 𝑝 < ∞, 𝑝 ≠ 2, the distance formula in Theorem 3.3 appears
to be previously unknown. This formula reveals additional information concerning
the lattice of invariant subspaces of 𝐻 𝑝 in that it allows for quantitative comparison
among 𝑧-invariant subspaces based on the generator of the subspace. In addition to
this observation, the proof of Proposition 3.1 gives rise to a guess for the metric pro-
jection of 1 onto any proper invariant subspace. This observation, fortuitously, allows
us to streamline the proof of a more general theorem that encompasses the previously
established results of this section.

Theorem 3.4 Let 1 < 𝑝 < ∞ and 𝑓 ∈ 𝐻 𝑝 , 𝑓 (0) ≠ 0. Put 𝑓 = 𝐽𝐹 , with 𝐽 inner and
𝐹 outer, and let 𝐽 = 𝐽 (0)𝐽 . Let 𝑔∗𝑝 be the metric projection of 1 onto [ 𝑓 ] 𝑝 , that is, 𝑔∗𝑝 is the
unique solution to the minimization problem

inf
𝑔∈[ 𝑓 ]𝑝

∥1 − 𝑔∥ 𝑝 .

Then 𝑔∗𝑝 is given as

𝑔∗𝑝 = 1 − (1 − 𝐽)2/𝑝 .

Moreover, 𝑔∗𝑝 has no inner factor other than 𝐽 and

dist𝐻 𝑝 (1, [ 𝑓 ] 𝑝) = (1 − |𝐽 (0) |2)1/𝑝 .

Proof Note that for 𝑧 ∈ D, |𝐽 (𝑧) | ⩽ |𝐽 (0) | < 1 and therefore 1− 𝐽 is non-vanishing
in the disk, and so 𝑔∗𝑝 is a well-defined function in 𝐻 𝑝 . We would like to show that
𝑔∗𝑝 is the metric projection of 1 onto [ 𝑓 ] 𝑝 . By Beurling’s Theorem for 𝐻 𝑝 , it suffices
to consider the infimum of ∥1 − 𝑔∥ 𝑝 for 𝑔 ∈ [𝐽] 𝑝 and show that the Birkhoff-James
orthogonality conditions hold:

1 − 𝑔∗𝑝 ⊥𝑝 𝑧
𝑘𝐽 ∀𝑘 ≥ 0.
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Observe, for 𝑘 ≥ 0,∫
T

��1 − 𝑔∗𝑝
��𝑝−2 (1 − 𝑔∗𝑝) 𝑧𝑘𝐽 𝑑𝑚

=

∫
T

���(1 − 𝐽)2/𝑝
���𝑝−2

(1 − 𝐽)2/𝑝 𝑧𝑘𝐽 𝑑𝑚

=

∫
T
(1 − 𝐽) (1 − 𝐽)

(𝑝−2)/𝑝
𝑧𝑘𝐽 𝑑𝑚

=

∫
T
(1 − 𝐽)

(𝑝−2)/𝑝
𝑧𝑘𝐽 𝑑𝑚 − 𝐽 (0)

∫
T
(1 − 𝐽)

(𝑝−2)/𝑝
𝑧𝑘 𝑑𝑚

= 0.

Further,

∥1 − 𝑔∗𝑝 ∥
𝑝
𝑝 = ∥(1 − 𝐽)2/𝑝 ∥ 𝑝𝑝 = ∥1 − 𝐽∥2

2 = 1 − |𝐽 (0) |2,

that is,

dist𝐻 𝑝 (1, [ 𝑓 ] 𝑝) = (1 − |𝐽 (0) |2)1/𝑝 .

Now, by the same argument as in the end of Theorem 3.3, 𝑔∗𝑝 has no additional inner
factor besides 𝐽 . ■

3.2 Consequences and corollaries

The distance formula appearing in Theorem 3.4 tells us that an additional inner factor
strictly increases the distance between 1 and the corresponding invariant subspace.
Namely, we have the following:

Corollary 3.5 Let 1 < 𝑝 < ∞ and let 𝑀 be a nontrivial closed 𝑧-invariant subspace of 𝐻 𝑝 .
Let 𝑁 ⊊ 𝑀 be a strictly smaller invariant subspace. Then

dist𝐻 𝑝 (1, 𝑁) > dist𝐻 𝑝 (1, 𝑀).

Let us employ this corollary in an example.

Example 3.6 For each 𝑛 ≥ 2, let 𝐵𝑛 be the Blaschke product having precisely a zero
of multiplicity 𝑛 at 1−1/𝑛, and zeros nowhere else. One may check that 𝐵𝑛 converges
pointwise to the atomic singular inner function 𝑒−

1+𝑧
1−𝑧 . Moreover, it is easy to see

that |𝐵𝑛 (0) | > |𝐵𝑛+1 (0) |. Therefore, the invariant subspace generated by the singular
inner function is buried deeper away from 1 than any of the subspaces generated by
the associated Blaschke products which approximate the singular inner function. This
is an example of a more general phenomenon, namely the distance of 1 to an invariant
subspace generated by a singular inner function is smaller, in the long run, than the
distance between 1 and the invariant subspaces generated by Blaschke products con-
verging to that singular inner function. This sheds additional light on the structure of
the lattice of 𝑧-invariant subspaces of 𝐻 𝑝 .

2025/11/06 17:56



12

We note also that if 𝑓 = 𝐽𝐹 ∈ 𝐻 𝑝 where 𝐽 is a nontrivial inner function and 𝐹 is
outer, then

dist𝐻 𝑝 (1, [ 𝑓 ] 𝑝) = inf
𝑔∈𝐻 𝑝

∥1 − 𝐽𝑔∥ 𝑝𝑝 = inf
𝑔∈𝐻 𝑝

∥𝐽 − 𝑔∥ 𝑝
𝐿𝑝 .

Therefore, the problem of finding the metric projection of 1 in 𝐻 𝑝 onto the invariant
subspace generated by an inner function is the same as the problem of best approxi-
mation of the conjugate of that inner function in 𝐿 𝑝 by an 𝐻 𝑝 function. Theorem 3.4
tells us that the best approximation is an outer function. Phrasing the problem in this
way also naturally brings in the tool of duality in extremal problems. Applying previ-
ously mentioned duality (1.1) to this particular extremal problem, Theorem 3.4 gives
rise to a highly nontrivial inequality for the dual problem, which we record now.

Corollary 3.7 Let 1 < 𝑞 < ∞. If 𝐽1 and 𝐽2 are non-constant inner functions not vanishing
at the origin, then the following strict inequality holds:

sup
∥𝑔∥𝑞⩽1

���� 1
2𝜋𝑖

∫
T
𝑔𝐽1 𝑑𝜁

���� < sup
∥𝑔∥𝑞⩽1

���� 1
2𝜋𝑖

∫
T
𝑔𝐽1𝐽2 𝑑𝜁

���� .
Proof The result follows from Corollary 3.5 and duality (1.1). ■

Note that Corollary 3.7 does not hold for 𝑞 = 1, since by Poreda’s Theorem [38]
for any finite Blaschke product 𝐵,

inf
𝑓 ∈𝐻∞

∥𝐵 − 𝑓 ∥𝐿∞ = 1.

Then by duality, if 𝐽1 and 𝐽2 are finite Blaschke products, both supremum values in
Corollary 3.7 are equal to one.

Applying Corollary 3.7 to Blaschke products, we obtain the following non-trivial
inequality:

Corollary 3.8 Let 1 < 𝑞 < ∞. Let {𝑎𝑘}∞𝑘=1 ⊆ D be a sequence of distinct values not
containing the origin and let 𝑛 > 𝑚. Then the following strict inequality holds:

sup
∥𝑔∥𝑞=1

����� 𝑚∑︁
𝑗=1

𝑔(𝑎 𝑗 )
( ∏𝑚

𝑘=1 (1 − 𝑎𝑘𝑎 𝑗 )∏𝑚
𝑘=1,𝑘≠ 𝑗 (𝑎𝑘 − 𝑎 𝑗 )

)����� < sup
∥𝑔∥𝑞=1

����� 𝑛∑︁
𝑗=1

𝑔(𝑎 𝑗 )
( ∏𝑛

𝑘=1 (1 − 𝑎𝑘𝑎 𝑗 )∏𝑛
𝑘=1,𝑘≠ 𝑗 (𝑎𝑘 − 𝑎 𝑗 )

)����� .
Proof Let 𝐽1 (𝑧) =

∏𝑚
𝑘=1

𝑎𝑘−𝑧
1−𝑎𝑘 𝑧

. Then for any 𝑔 ∈ 𝐻𝑞 , since 𝐽1 (𝜁) = 1
𝐽1 (𝜁 ) for

|𝜁 | = 1 and by the Residue Theorem,

1
2𝜋𝑖

∫
T
𝑔𝐽1 𝑑𝜁 =

1
2𝜋𝑖

∫
T
𝑔(𝜁)

(
𝑚∏
𝑘=1

1 − 𝑎𝑘𝜁
𝑎𝑘 − 𝜁

)
𝑑𝜁 =

𝑚∑︁
𝑗=1

Res(𝑔̃; 𝑎 𝑗 ),
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where 𝑔̃(𝑧) = 𝑔(𝑧)
(∏𝑚

𝑘=1
1−𝑎𝑘 𝑧

𝑎𝑘−𝑧

)
. Note that

Res(𝑔; 𝑎 𝑗 ) = 𝑔(𝑎 𝑗 )
( ∏𝑚

𝑘=1 (1 − 𝑎𝑘𝑎 𝑗 )∏𝑚
𝑘=1,𝑘≠ 𝑗 (𝑎𝑘 − 𝑎 𝑗 )

)
.

Doing a similar computation for the right hand side of the inequality yields the result.
■

Clearly, one can easily extend Corollary 3.8 to infinite Blaschke products 𝐵1 and 𝐵2
having distinct zeros and such that the zero set of 𝐵1 is strictly contained in the zero
set of 𝐵2, and the zero set of 𝐵2 does not contain the origin. When we apply Corollary
3.8 to two Blaschke factors, we obtain the following:

Example 3.9 Suppose 𝑎, 𝑏 ∈ D \ {0} are distinct and let 𝐽1 (𝑧) = 𝑧−𝑎
1−𝑎̄𝑧 and 𝐽2 (𝑧) =

𝑧−𝑏
1−𝑏̄𝑧 . Then the left hand side of the inequality in Corollary 3.8 is

sup
∥𝑔∥𝑞=1

|𝑔(𝑎) | (1 − |𝑎 |2).

It is easy to show using Hölder’s inequality that this supremum is equal to (1− |𝑎 |2)
1
𝑝

(here, 𝑝 is the Hölder conjugate to 𝑞) and the extremal function is

𝑔∗ (𝑧) =
(

1 − |𝑎 |2
(1 − 𝑎𝑧)2

)1/𝑞
.

On the other hand, the right hand side of the inequality in Corollary 3.8 is

sup
∥𝑔∥𝑞=1

����𝑔(𝑎) (1 − |𝑎 |2) 1 − 𝑏̄𝑎
𝑏 − 𝑎 − 𝑔(𝑏) (1 − |𝑏 |2) 1 − 𝑎𝑏

𝑏 − 𝑎

���� .
Therefore, Corollary 3.8 states in this special case that the following strict inequality
holds:

(1 − |𝑎 |2)1/𝑝 < sup
∥𝑔∥𝑞=1

����𝑔(𝑎) (1 − |𝑎 |2) 1 − 𝑏̄𝑎
𝑏 − 𝑎 − 𝑔(𝑏) (1 − |𝑏 |2) 1 − 𝑎𝑏

𝑏 − 𝑎

���� .
Curiously, even for 𝑝 = 𝑞 = 2, we have not been able to find a direct proof of this
elementary inequality for distinct arbitrary elements 𝑎, 𝑏 ∈ D \ {0}.

The metric projections discussed in the present section can also be obtained via
limits of optimal polynomial approximants, which we discuss now.

4 Optimal polynomial approximants in 𝐻𝑝

For 𝑛 ∈ N, we denote by P𝑛 the set of complex polynomials of degree at most 𝑛.
Given 1 < 𝑝 < ∞ and 𝑓 ∈ 𝐻 𝑝 with 𝑓 (0) ≠ 0, there exists a unique polynomial
𝑞𝑛,𝑝 [ 𝑓 ] ∈ P𝑛 such that

∥1 − 𝑞𝑛,𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝 = inf
𝑞∈P𝑛

∥1 − 𝑞 𝑓 ∥ 𝑝 .
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We recall that these minimizing polynomials are called the optimal polynomial approx-
imants (OPAs) to 1/ 𝑓 in 𝐻 𝑝 . These polynomials have been extensively studied in
various settings (for existence and uniqueness of OPAs in Hardy spaces see [17,
Section 2]; see Section 1 for references pertaining to other relevant work).

It is well known that if 𝑓 ∈ 𝐻2 with 𝑓 (0) ≠ 0, then the OPAs to 1/ 𝑓 in 𝐻2 cannot
vanish in the closed unit disk. This result was first established in [24] and later reestab-
lished in [12]. On the other hand, a corresponding result for 𝑝 ≠ 2 has been explored
(see [17, 18, 19]) but has yet to be fully understood. We begin with an alternative proof
of this fact for 𝐻2 which may be helpful in extending the result to the 𝐻 𝑝 setting.

Proposition 4.1 Let 𝑓 ∈ 𝐻2 with 𝑓 (0) ≠ 0. If 𝐽 is any non-constant inner function, then
there exists a constant 𝑐 = 𝑐 𝑓 ∈ T such that

∥1 − 𝐽 𝑓 ∥2 > ∥1 − 𝑐 𝑓 ∥2.

Proof Observe:

∥1 − 𝐽 𝑓 ∥2
2 =

∫
T
|1 − 𝐽 𝑓 |2 𝑑𝑚

=

∫
T
(1 − 𝐽 𝑓 ) (1 − 𝐽 𝑓 ) 𝑑𝑚

= 1 + ∥ 𝑓 ∥2 − 2 Re(𝐽 (0) 𝑓 (0))
⩾ 1 + ∥ 𝑓 ∥2 − 2|𝐽 (0) 𝑓 (0) |
> 1 + ∥ 𝑓 ∥2 − 2| 𝑓 (0) |,

where the penultimate inequality holds because, by the Maximum Principle, |𝐽 (0) | <
1. Taking 𝑐 so that 𝑐 𝑓 (0) = | 𝑓 (0) |, a simple calculation, similar to that above, shows

∥1 − 𝑐 𝑓 ∥2
2 = 1 + ∥ 𝑓 ∥2 − 2| 𝑓 (0) |,

which completes the proof. ■

A similar inequality holding in 𝐻 𝑝 would allow us to deduce that OPAs in 𝐻 𝑝

cannot vanish in the disk.

Proposition 4.2 Let 1 < 𝑝 < ∞. Suppose 𝑓 ∈ 𝐻 𝑝 with 𝑓 (0) ≠ 0 and let 𝐽 be any
non-constant inner function with 𝐽 (0) ≠ 0. If there exists a constant 𝑐 ∈ C \ {0} such that

∥1 − 𝐽 𝑓 ∥ 𝑝 ⩾ ∥1 − 𝑐 𝑓 ∥ 𝑝 ,

then any non-trivial optimal polynomial approximant in 𝐻 𝑝 cannot vanish in the open unit
disk.

Proof Let 𝑔 ∈ 𝐻 𝑝 with 𝑔(0) ≠ 0. Without loss of generality, assume that the degree
of 𝑞𝑛,𝑝 [𝑔] is 𝑛. If 𝑞𝑛,𝑝 [𝑔] has zeros in D, we write 𝑞𝑛,𝑝 [𝑔] = 𝐵𝑘 𝑝𝑛, where 𝐵𝑘 is a
Blaschke product of degree 𝑘 with 1 ⩽ 𝑘 ⩽ 𝑛 and 𝑝𝑛 is a polynomial of degree at
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Metric projections, zeros of optimal polynomial approximants, and extremal problems 15

most 𝑛 with no zeros in the disk. Then, by hypothesis,

∥1 − 𝑞𝑛,𝑝 [𝑔]𝑔∥ 𝑝 = ∥1 − 𝐵𝑘 𝑝𝑛𝑔∥ 𝑝 ⩾ ∥1 − 𝑐𝑝𝑛𝑔∥ 𝑝

for some constant 𝑐 ∈ C. However, by minimality of 𝑞𝑛,𝑝 [𝑔] and since 𝑐𝑝𝑛 has degree
at most 𝑛, we get 𝑞𝑛,𝑝 [𝑔] = 𝑐𝑝𝑛, which is a contradiction since 𝑝𝑛 has no zeros in the
disk. ■

In light of Proposition 4.1, we conjecture the following:

Conjecture 4.3 Let 1 < 𝑝 < ∞ and 𝑓 ∈ 𝐻 𝑝 with 𝑓 (0) ≠ 0. If 𝐽 is any non-constant
inner function, then there exists a constant 𝑐 = 𝑐 𝑓 ∈ T such that

∥1 − 𝐽 𝑓 ∥ 𝑝 > ∥1 − 𝑐 𝑓 ∥ 𝑝 .

By continuity, we can at least say that the desired inequality still holds for val-
ues of 𝑝 which are close to two. In particular, using [19, Lemma 3.1.1], we obtain the
following:

Proposition 4.4 Suppose 𝑓 ∈ 𝐻∞ and 𝑓 (0) ≠ 0. Then there exists a neighborhood of 𝑝 = 2
such that the optimal polynomial approximants to 1/ 𝑓 in 𝐻 𝑝 do not vanish in D.

Remark 4.5 We note that, using the continuity properties of the optimal polyno-
mial approximants, we can replace D with D in the previous result. Indeed, under the
assumptions of Proposition 4.4, we know that, for any 𝑛 ∈ N, the polynomials 𝑞𝑛,𝑝 [ 𝑓 ]
converge to 𝑞𝑛,2 [ 𝑓 ] as 𝑝 → 2 uniformly on D (see Lemma 3.1.1 in [19]). Noting that
𝑞𝑛,2 [ 𝑓 ] does not vanish on D establishes the claim.

4.1 Behavior of OPAs and bounds on their roots

Using the results of the previous sections, we can say more about the roots of optimal
polynomial approximants in 𝐻 𝑝 . First, we get that the roots always escape any com-
pact subset of D as 𝑛 increases ad infinitum, which is an improvement of Proposition
5.1 in [18].

Proposition 4.6 Let 1 < 𝑝 < ∞ and 𝑓 ∈ 𝐻 𝑝 with 𝑓 (0) ≠ 0. Then, for any compact subset
𝐾 of D, there exists 𝑁 ∈ N such that the roots of 𝑞𝑛,𝑝 [ 𝑓 ] lie outside 𝐾 for all 𝑛 ⩾ 𝑁 .

Proof Let 𝑓 = 𝐽𝐹 , with 𝐽 inner and 𝐹 outer, and let 𝑔∗𝑝 be the metric projection
of 1 on [ 𝑓 ] 𝑝 as given in Theorem 3.4. We know that 𝑞𝑛,𝑝 [ 𝑓 ] 𝑓 → 𝑔∗𝑝 in 𝐻 𝑝 (see for
example Proposition 3.0.1 in [19]). Since the inner factor of 𝑔∗𝑝 is 𝐽 , we also get that
the sequence 𝑞𝑛,𝑝 [ 𝑓 ]𝐹 converges to the outer part of 𝑔∗𝑝 in 𝐻 𝑝 which of course does
not vanish in D. The result follows by Hurwitz’s Theorem. ■

In [17], Centner gave the following lower bound: let 1 < 𝑝 < ∞, 𝑓 ∈ 𝐻 𝑝 with
𝑓 (0) ≠ 0 and 𝑛 ∈ N, then any root of 𝑞𝑛,𝑝 [ 𝑓 ] must lie outside the open disc of radius
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(1 − ∥1 − 𝑞𝑛,𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝𝑝)1/2 centered at the origin (see [17, Proposition 5.1]). We next
provide an improvement.

Proposition 4.7 Let 1 < 𝑝 < ∞ and 𝑛 ∈ N. Suppose that 𝑓 ∈ 𝐻 𝑝 has inner part 𝐽 , with
𝐽 (0) ≠ 0. Let also 𝑤1, . . . , 𝑤𝑘 be the roots (counting multiplicities) of 𝑞𝑛,𝑝 [ 𝑓 ] in D. Then

|𝑤1 · · ·𝑤𝑘 | ⩾
(1 − ∥1 − 𝑞𝑛,𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝𝑝)1/2

|𝐽 (0) | . (4.1)

Proof We have that 𝑞𝑛,𝑝 [ 𝑓 ] = 𝐵𝑘 𝑝𝑛 where 𝐵𝑘 is the Blaschke product formed by
the roots 𝑤1, . . . , 𝑤𝑘 and 𝑝𝑛 is a polynomial of degree at most 𝑛 that does not vanish
in D. Then, by Theorem 3.3, we have

∥1 − 𝑞𝑛,𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝𝑝 = ∥1 − 𝐵𝑘 𝑝𝑛 𝑓 ∥ 𝑝𝑝
⩾ inf

𝜑∈𝐻 𝑝
∥1 − 𝐵𝑘𝐽𝜑∥ 𝑝𝑝

= 1 − |𝑤1 · · ·𝑤𝑘𝐽 (0) |2.

Rearranging the terms of the inequality yields the claim. ■

Remark 4.8 Note that since

lim
𝑛→∞

∥1 − 𝑞𝑛,𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝𝑝 = dist𝑝
𝐻 𝑝 (1, [ 𝑓 ] 𝑝) = 1 − |𝐽 (0) |2,

the right-hand side of (4.1) converges to 1 as 𝑛 increases to ∞. Thus, Proposition 4.7
can be viewed as a quantitative version of Proposition 4.6.

Next, we give bounds for the roots of optimal polynomial approximants that
depend on whether 𝑝 is greater or less than two.

Proposition 4.9 Let 1 < 𝑝 < 2 and 𝑛 ∈ N. Suppose that 𝑓 ∈ 𝐻 𝑝 has inner part 𝐽 , with
𝐽 (0) ≠ 0. Let also 𝑤1, . . . , 𝑤𝑘 be the roots (counting multiplicities) of 𝑞𝑛,𝑝 [ 𝑓 ] in D, then

|𝑤1 · · ·𝑤𝑘 | ⩾

(
1 −

[
1 − | 𝑓 (0) |2

∥ 𝑓 ∥2
2

] 𝑝/2
)1/2

|𝐽 (0) | .

In particular, if 𝑓 = 𝐽 is inner, then

|𝑤1 · · ·𝑤𝑘 | ⩾

(
1 −

[
1 − |𝐽 (0) |2

] 𝑝/2
)1/2

|𝐽 (0) | .

Proof We combine Proposition 4.7 with the note following Proposition 4.0.15 in
[19], which says that

∥1 − 𝑞𝑛,𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝 ⩽

(
1 − | 𝑓 (0) |2

∥ 𝑓 ∥2
2

)1/2

.

■
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For the case 2 < 𝑝 < ∞, we first need the following lemma:

Lemma 4.10 Let 1 < 𝑝 < ∞, and let 𝑓 ∈ 𝐻 𝑝 . Then

∥1 − 𝑞0, 𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝 < 1

if and only if 𝑓 (0) ≠ 0. In this case,

∥1 − 𝑞0, 𝑝 [ 𝑓 ] 𝑓 ∥𝑟𝑝 ⩽
𝐴𝑟/(𝑟−1)

(1 + 𝐴1/(𝑟−1) )𝑟
+ 𝐴

(1 + 𝐴1/(𝑟−1) )𝑟
< 1,

where 𝐾 and 𝑟 are the relevant upper Pythagorean parameters and

𝐴 := 𝐾




 𝑓 − 𝑓 (0)
𝑧 𝑓 (0)





𝑟
𝑝

Proof There is no harm in first assuming 𝑓 (0) = 1, so suppose 𝑓 = 1 + 𝑧𝜑 ∈ 𝐻 𝑝 ,
with 𝜑 nonzero. Then for 0 < 𝑐 ⩽ 1, we have∫

T
(1 − 𝑐) ⟨𝑝−1⟩𝑧𝜑 𝑑𝑚 = 0.

Consequently, (1 − 𝑐) ⊥𝑝 𝑧𝜑 holds, and by Theorem 2.2 we have

1 − 𝑐 𝑓 (𝑧) = (1 − 𝑐) + (−𝑐𝑧𝜑(𝑧))
∥1 − 𝑐 𝑓 ∥𝑟𝑝 ⩽ (1 − 𝑐)𝑟 + 𝐾 ∥𝑐𝑧𝜑∥𝑟𝑝

= (1 − 𝑐)𝑟 + 𝐾𝑐𝑟 ∥𝜑∥𝑟𝑝 , (4.2)

where 𝑟 and 𝐾 are the applicable Pythagorean parameters.
Write 𝐴 := 𝐾 ∥𝜑∥𝑟𝑝 . By elementary calculus, the expression

(1 − 𝑐)𝑟 + 𝐴𝑐𝑟

is critical when

0 = 𝑟 (1 − 𝑐)𝑟−1 (−1) + 𝑟𝐴𝑐𝑟−1

(1 − 𝑐)𝑟−1 = 𝐴𝑐𝑟−1

𝑐 =
1

1 + 𝐴1/(𝑟−1) .

Thus the expression (4.2) takes the minimum value

𝐴𝑟/(𝑟−1)

(1 + 𝐴1/(𝑟−1) )𝑟
+ 𝐴

(1 + 𝐴1/(𝑟−1) )𝑟
,

and hence it suffices to show this quantity is less than 1.
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Indeed, it is elementary to see that for any 𝐵 > 0 we have

𝐵𝑟
(
1 + 1

𝐵

)
< 𝐵𝑟

(
1 + 1

𝐵

)𝑟
𝐵𝑟−1 + 𝐵𝑟 < (1 + 𝐵)𝑟

𝐵𝑟−1 + 𝐵𝑟

(1 + 𝐵)𝑟 < 1.

Substituting 𝐵 = 𝐴1/(𝑟−1) , we conclude

∥1 − 𝑐 𝑓 ∥𝑟𝑝 ⩽
𝐴𝑟/(𝑟−1)

(1 + 𝐴1/(𝑟−1) )𝑟
+ 𝐴

(1 + 𝐴1/(𝑟−1) )𝑟
< 1.

More generally, for 𝑓 (0) ≠ 0, apply the above argument to 𝑓 (𝑧)/ 𝑓 (0), and make the
corresponding change to the definition of 𝐴.

Conversely, if 𝑓 (0) = 0, then the Mean Value Property for subharmonic functions
immediately yields the minimal choice 𝑐 = 0.

■

Proposition 4.11 Let 2 < 𝑝 < ∞ and 𝑛 ∈ N. Suppose that 𝑓 ∈ 𝐻 𝑝 has inner part 𝐽 , with
𝐽 (0) ≠ 0. Let also 𝑤1, . . . , 𝑤𝑘 be the roots (counting multiplicities) of 𝑞𝑛,𝑝 [ 𝑓 ] in D, then

|𝑤1 · · ·𝑤𝑘 | ⩾
1

|𝐽 (0) |
©­«1 −

(
(𝑝 − 1)∥ 𝑓 − 𝑓 (0)∥2

𝑝

| 𝑓 (0) |2 + (𝑝 − 1)∥ 𝑓 − 𝑓 (0)∥2
𝑝

) 𝑝/2ª®¬
1/2

.

Proof First note that

∥1 − 𝑞0, 𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝𝑝 ⩾ ∥1 − 𝑞𝑛,𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝𝑝 ⩾ 1 − |𝑤1 · · ·𝑤𝑘𝐽 (0) |2,

and apply the upper bound for ∥1 − 𝑞0, 𝑝 [ 𝑓 ] 𝑓 ∥ 𝑝𝑝 from Lemma 4.10. For 2 < 𝑝 < ∞,
the parameters are 𝑟 = 2 and 𝐾 = 𝑝 − 1, and the bound simplifies to

∥1 − 𝑞0, 𝑝 [ 𝑓 ] 𝑓 ∥2
𝑝 ⩽

𝐴

𝐴 + 1
, where 𝐴 =

(𝑝 − 1)∥ 𝑓 − 𝑓 (0)∥2
𝑝

| 𝑓 (0) |2 .

Straightforward computation now yields the desired result. ■

5 Concluding Remarks and Open Questions

We end with a few comments and questions.

Remark 5.1 (The cases 0 < 𝑝 ≤ 1 and 𝑝 = ∞) As is well known, the solution of
extremal problems similar to problems considered in this paper need not be unique in
𝐻 𝑝 for 0 < 𝑝 ⩽ 1 and 𝑝 = ∞. Nevertheless, it would be interesting to see what one
can say about metric projections and OPAs in those spaces. Birkhoff-James orthogo-
nality does not hold for 0 < 𝑝 < 1, since the dual space is trivial. Along the same lines,
it is natural to ask if the tools developed here can give a new unified proof of Beurl-
ing’s Theorem for all 0 < 𝑝 < ∞, versus diverting the proof to the case 𝑝 = 2 via
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factorization of 𝐻 𝑝 functions as is done in [31, p. 98]. We also note that for 𝑝 = ∞, as
soon as any OPA vanishes in D, it must vanish identically by the Maximum Principle.

Remark 5.2 (Outer factor in the extremal function) When 𝑝 = 2, the projection of 1
onto a nontrivial closed 𝑧-invariant subspace gives a constant times an inner function,
while for 1 < 𝑝 < ∞ (𝑝 ≠ 2), we get a non-constant outer function times an inner
function. It would be interesting to gain a better understanding of why a non-constant
outer function appears in the projection in the Banach space setting, versus the Hilbert
space setting.

Remark 5.3 (Universality and dynamics) The continuity of metric projections implies
that, given any compact set 𝐾 , the mapping Q𝑛 : 𝐻 𝑝 \ {0} → 𝐶 (𝐾), which takes a
function 𝑓 to its OPA 𝑞𝑛,𝑝 [ 𝑓 ], is continuous. This was a key ingredient for establish-
ing the existence of functions in 𝐻2 whose optimal polynomial approximants have
universal approximation properties on subsets of the unit circle with zero arclength
measure (see [9, Proposition 2.1]). The second main ingredient in proving the univer-
sality result is the following formula, which describes the explicit dependence of an
OPA on its outer part (see [9, Proposition 2.2]): If 𝑔 is an inner function in 𝐻2 and
𝑓 ∈ 𝐻2 \ {0}, then 𝑞𝑛,2 [ 𝑓 𝑔] = 𝑔(0)𝑞𝑛,2 [ 𝑓 ]. Thus, it is natural to examine the anal-
ogous result for the 𝐻 𝑝 setting, which could provide results about universality in the
𝐻 𝑝 setting.

It would also be interesting to study the interplay between the dynamics of the
zeros of𝐻 𝑝 functions and the corresponding extremal problem (3.9). Moving a zero of
a Blaschke product 𝐽 closer to the circle gives rise to a smaller distance between 1 and
the corresponding 𝑧-invariant subspace generated by 𝐽 (as seen from the distance for-
mula in Theorem 3.3). For example, if 𝐽 has zeros 𝑎1, 𝑎2, . . ., then infℎ∈𝐻 𝑝 ∥1−𝐽ℎ∥ 𝑝𝑝 =

1 − |𝑎1𝑎2 · · · |2. So if a zero 𝑎1 wanders closer to the unit circle, the corresponding
distance decreases. Along the same lines, it would be interesting to study the zeros of
the first degree OPA as 𝑝 varies, for a fixed 𝑓 . It is known, for instance, that if 𝑓 is a
bounded analytic function, then the linear OPA for 1/ 𝑓 varies uniformly with 𝑝 [19,
Lemma 3.1.1]; moreover, if 𝑓 is inner, then the root of this linear OPA is bounded from
the origin by an amount depending only on 𝑝 [18, Theorem 5.1.3]. Recall also that in
𝐻2 and in certain other Dirichlet-type Hilbert spaces, as long as 1/ 𝑓 is not analytic
in the closed disk, although the zeros of the OPAs stay outside the closed unit disk, a
Jentzsch-type phenomemon occurs [10]: that is, every point on the unit circle is a limit
of the zeros of the OPAs of 1/ 𝑓 . Does such a Jentzsch-type phenomenon occur in 𝐻 𝑝

for 𝑝 ≠ 2?

Remark 5.4 (Bergman spaces) Finally, the notion of 𝑧-invariant subspaces and cor-
responding extremal problems as considered in Sections 3 and 4 can easily be refor-
mulated for Bergman spaces of analytic functions. Recall that for 0 < 𝑝 < ∞, the
Bergman space 𝐴𝑝 is defined as

𝐴𝑝 :=
{
𝑓 ∈ Hol(D) : ∥ 𝑓 ∥ 𝑝

𝐴𝑝 :=
∫
D
| 𝑓 (𝑧) |𝑝 𝑑𝐴(𝑧) < ∞

}
,
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where 𝑑𝐴 is normalized area measure on the unit disk. For 1 ⩽ 𝑝 < ∞, 𝐴𝑝 is a Banach
space. The lattice of 𝑧-invariant subspaces is much more complicated in 𝐴𝑝 than in𝐻 𝑝 ,
and elements of this lattice are not necessarily singly-generated (see [2, 33]). More-
over, there is no factorization of 𝐴𝑝 functions as transparent as the factorization of
functions in Hardy spaces. However, the notion of an inner function has been mean-
ingfully extended to Bergman spaces: a function 𝐺 ∈ 𝐴𝑝 is called 𝐴𝑝-inner if for
𝑛 = 0, 1, 2, . . ., we have ∫

D
(|𝐺 (𝑧) |𝑝 − 1) 𝑧𝑛 𝑑𝐴(𝑧) = 0.

Thus, if 𝐺 is an 𝐴𝑝-inner function and we consider the 𝑧-invariant subspace 𝑀 =

[𝐺]𝐴𝑝 , one can investigate metric projections of 1 onto 𝑀 in a way that is analogous
to investigating metric projections of 1 onto 𝑧-invariant subspaces in 𝐻 𝑝 . Following
results in [32] for 𝑝 = 2, the orthogonal projection of 1 onto [𝐺]𝐴2 is given by𝐺 (0)𝐺 ,
as is true within the analogous setup in 𝐻2. Therefore, it is natural to guess that for
1 < 𝑝 < ∞ (𝑝 ≠ 2), the metric projection of 1 onto [𝐺]𝐴𝑝 gives a cyclic vector times
𝐺 , in analogue with the conclusion of Theorem 3.4 (here, a function 𝑓 ∈ 𝐴𝑝 being
cyclic means that [ 𝑓 ]𝐴𝑝 = 𝐴𝑝).
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